Functionally Modified Cellulose Nanocrystals as an Adsorbent for Anionic Dyes

Ming Li, ShiYu Fu

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province, 510640, China

Abstract: Cellulose nanocrystal was modified with poly(N,N-diethyl-laminomethyl methacrylate) to prepare an adsorbent containing amine groups for removing anionic dyes from waste water. The prepared adsorbent was characterized by Fourier-transform infrared spectrometry (FT-IR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The adsorption was affected by various factors, such as the contact time, adsorbent dosage, dye solution pH value, initial dye concentration, and ionic strength. The results revealed that amine functional groups mainly contribute to the adsorption of azo dyes (AO7). The adsorbent showed pseudo-second-order adsorption kinetics, indicating that the dye molecules were chemisorbed on the adsorbent. The adsorption isotherm was found to fit better with the Langmuir isotherm model than with the Freundlich isotherm model.

Keywords: cellulose nanocrystal; anionic dye; adsorption kinetic; adsorption isotherm

1 Introduction

Water contamination due to the discharge of dyes into water bodies has grown drastically over the past few years. Dye waste water contains a large amount of toxic azo dyes. Azo dye molecules in dye waste water are decomposed into aromatic amines and aromatic derivatives. These aromatic compounds have long been identified as carcinogenic and mutagenic and caused grievous injury to aquatic organisms and human life[1-2]. Therefore, it is essential to remove azo dyes from dye waste water before discharging it into water bodies.

Many physical/chemical methods such as coagulation/flocculation[3], anion exchange[4-5], chemical precipitation[6], electrochemical processes[7], membrane technology[8], and adsorption processes[9] have been reported for removing azo dyes from waste water. However, some of these methods are not efficient for practical...
Hence, functional monomers can be easily grafted onto it to synthesize multifunctional materials. N,N-diethylaminomethyl methacrylate (DMAEMA) is a tertiary amine-containing acrylic monomer that can be easily polymerized by various reactions such as Atom Transfer Radical Polymerization (ATRP)\(^{[15]}\) and Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT)\(^{[16]}\). In this work, DMAEMA was polymerized on the surface of CNC by ATRP. The functionalized CNC was used as an adsorbent for acid orange 7 (AO7) dye. The modified CNC was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). Furthermore, the adsorption behavior of the CNC adsorbent was investigated under equilibrium and dynamic conditions.

2 Materials and methods

2.1 Chemicals and instrument

2-Bromoisobutyryl bromide (BIBB), N-methyl-2-pyrrolidone (NMP), CuBr (99%, Energy Chemical), 2-(Dimethyl amino) pyridine (DMAP), AO7, N, N, N', N''-pentamethyl diethylenetriamine (PMDETA), and 2-(diethylamino) ethylmethacrylate (DMAEMA, 99%) were purchased from Shanghai Aladdin Co., Ltd., China. N,N-dimethylformamide (DMF) and triethylamine (TEA, AR) were obtained from Tianjin Chemical Company, Tianjin, China. The chemical structure and characteristics of AO7 are shown in Table 1. DMF was dried by molecular sieves (4 Å) before use. CuBr was purified by acetic acid and ethanol. CNC was prepared using a method reported by us previously\(^{[17]}\).

<table>
<thead>
<tr>
<th>Items</th>
<th>Parameters</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular formula</td>
<td>C({16})H({11})N(_2)O(_4)SNa</td>
<td></td>
</tr>
<tr>
<td>C.I. name</td>
<td>Acid orange II</td>
<td></td>
</tr>
<tr>
<td>Chromophore</td>
<td>Monoazo</td>
<td></td>
</tr>
<tr>
<td>Ionization</td>
<td>Acidic</td>
<td></td>
</tr>
<tr>
<td>Molecular weight/(g \cdot mol(^{-1}))</td>
<td>350.32</td>
<td></td>
</tr>
<tr>
<td>(\lambda_{\text{max}}/\text{nm})</td>
<td>485</td>
<td></td>
</tr>
</tbody>
</table>
FT-IR (VERTEX 70, Bruker, Germany), XPS (Kratos Axis Ultra DLD, Kratos, England), and TGA (TA Q500, USA) were used to determine the chemical structure and the surface elemental composition of the CNC samples. An ultraviolet-visible (UV-vis) spectrophotometer (G1369C, Agilent, China) was employed to determine the concentration of dye in the dye solution.

2.2 Preparation of CNC-based adsorbent

The CNC-based adsorbent was synthesized according to a previously reported method\[18\]. The synthesis route, which involved the ATRP of DMAEMA on CNC, is shown in Scheme 1. First, the initiator was fixed on the surface of CNC. CNC (3.24 g), NMP (200 mL), DMAP (0.02 mol), and TEA (0.03 mol) were added in a flask filled with Ar. BIBB (0.12 mol) was added to this flask over 1 h. The reaction system was then placed in an ice-water bath for 24 h. The resulting product, CNC-Br, was thoroughly washed and freeze-dried. CNC-Br (0.4 g) was then added to a flask containing DMF (30 mL), DMAEMA (0.05 mol), CuBr (0.5 mmol), and PMDETA (0.5 mmol). The polymerization reaction was carried out at 60°C for 6 h under stirring after executing three freeze-evacuate-thaw cycles. The white product so obtained was thoroughly washed and extracted with a mixture of water and ethanol (water : ethanol=1 : 1 (V/V)) for 4 h and was finally freeze-dried.

\[\text{Scheme 1} \quad \text{Synthesis route (a) and schematic (b) of the CNC-based adsorbent} \]

2.3 Adsorption experiment

Batch experiments were conducted to investigate the effects of the contact time, dye solution temperature, ionic strength, initial pH value, and adsorbent dosage on the adsorption capacity of the adsorbent. A certain amount of adsorbent was added to the dye solution under stirring at 400 r/min for a predetermined time and was then removed by centrifugation. The residual concentration of AO7 in the dye solution after the adsorption was determined at 485 nm using a UV-vis spectrophotometer. The residual dye concentration was determined from a standard curve derived from a series of dye solutions with a known dye content. The adsorbent dosage in the AO7 dye (400 mg/L) solution was varied from 10 mg to 80 mg and the solution temperature was maintained at 20°C. The effect of the initial pH value on the dye removal efficiency of the adsorbent was investigated by varying the initial pH value (which was adjusted with 0.1 mol/L HCl or NaOH at the beginning) of the solution. In order to investigate the effects of the contact time and ionic strength on the adsorption of AO7 molecules onto the CNC adsorbent, different contact times (4, 8, 12, 16, 20, 30, and 40 min) and NaCl concentrations (0.001~0.1 mol/L) were used. To determine the adsorption capacity of the CNC-based adsorbent at different temperatures (i.e. 20°C and 30°C), the initial concentration of AO7 in the adsorption medium (pH=2.0, t=20 min) was varied from 100 mg/L to 700 mg/L. All the experiments were carried out in duplicate. The dye removal efficiency of the adsorbent was calculated using Equation (1):

\[R = \frac{C_0 - C_t}{C_0} \times 100\% \]

(1)

Where, \(C_0 \) and \(C_t \) are the concentrations (mg/L) of dye initially and at time \(t \), respectively. The amount of dye adsorbed per unit mass of the adsorbent at equilibrium, \(Q_e \) (mg/g), was calculated using Equation (2):

\[Q_e = \frac{(C_0 - C_e) \cdot V}{m} \]

(2)

Where, \(Q_e \) is the dye adsorbed at equilibrium, \(C_e \) is the equilibrium dye concentration (mg/L), and \(m \) and \(V \) are the mass of the adsorbent (g) and volume of the dye solution (L), respectively.

PBM · Modified CNC as Adsorbent

3 Results and discussion

3.1 Characterization of CNC-Br and CNC-PDMAEMA

FT-IR and XPS analyses were carried out to examine the chemical structure and surface elements of CNC-Br and CNC-PDMAEMA. BIBB was anchored on the surface of CNC by esterification to prepare the ATRP initiator. As shown in Fig.1(b), unlike CNC, CNC-Br showed a strong FT-IR peak at 1740 cm\(^{-1}\). This peak corresponds to the stretching vibration of C—O from the ester group\(^1\). A strong peak at 1280 cm\(^{-1}\) corresponding to C—O was observed in the FT-IR spectrum of CNC-Br (Fig.1(b))\(^2\). The XPS spectrum of CNC-Br (Fig.2) showed a Br3d peak at 68 eV. It can be observed from Table 2 that the Br content in CNC-Br was 3.01%.

These results suggest that BIBB was successfully grafted onto the CNC surface (reaction is shown in Scheme 1).

![Fig.1 FT-IR spectra of (a) CNC, (b) CNC-Br, and (c) CNC-PDMAEMA](image1)

After the polymerization reaction, the intensity of the peak at 1740 cm\(^{-1}\) increased (Fig.1(b) and Fig.1(c)) because of the additional carbonyl groups from PDMAEMA. The peaks at 2946, 2822, and 2773 cm\(^{-1}\) can be attributed to the C—H groups of PDMAEMA. The peak at 1460 cm\(^{-1}\) corresponds to the C—C stretching vibration, while that at 1150 cm\(^{-1}\) corresponds to the stretching vibration of C—N from the —N(CH\(_3\)\(_2\))— group. From Fig.2 it can be observed that after the polymerization, new resonance signals were generated attributing to the carbon of CNC-PDMAEMA. After the ATRP reaction of CNC-PDMAEMA, the characteristic peak of N was detected at 396 eV (Fig.2). In addition, the nitrogen content in CNC-PDMAEMA increased sharply (5.03%, N1s), compared with that in CNC-Br (Table 2). These results confirm that PDMAEMA was successfully grafted onto the surface of CNC.

![Fig.2 XPS spectra of CNC-Br and CNC-PDMAEMA](image2)

<table>
<thead>
<tr>
<th>Samples</th>
<th>C1s</th>
<th>O1s</th>
<th>N1s</th>
<th>Br3d</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC-Br</td>
<td>53.66</td>
<td>43.22</td>
<td>0.11</td>
<td>3.01</td>
</tr>
<tr>
<td>CNC-PDMAEMA</td>
<td>67.73</td>
<td>25.62</td>
<td>5.03</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Table 2 Elemental surface composition of CNC-Br and CNC-PDMAEMA, as determined by XPS

The TG/differential TG (DTG) curves for CNC, CNC-Br, and CNC-PDMAEMA are shown in Fig.3. For CNC, the initial weight loss was observed at 240°C. This weight loss can be mainly attributed to the carbonization and volatilization of small molecular compounds and water\(^3\). The thermal decomposition of CNC-Br began at 170°C (lower than the initial decomposition temperature of CNC) because of the release of HBr formed during the heating. The TG and DTG curves of CNC-PDMAEMA show that the weight loss occurred in three stages. In the first stage (\(T_1=220–290°C\)), almost 63% weight loss was observed because of the pyrolytic decomposition of PDMAEMA that was grafted onto CNC. In the second stage of decomposition (\(T_2=330°C\)), the weight loss occurred because of the splitting of the cellulose structure and main-chain scission. A total weight loss of about 95% was observed in the final stage (\(T_3=420°C\)) attributing to the formation of large amounts of volatile compounds and solid char from the decomposed cellulose units\(^4\).
3.2 Dye adsorption properties

3.2.1 Effects of adsorbent dosage and dye solution pH value

The dye (AO7) removal efficiency of CNC at various adsorbent dosages (10~80 mg) and dye solution pH values was measured (Fig.4). The dye removal efficiency increased with an increase in the adsorbent dosage. For a fixed initial dye concentration, an increase in the adsorbent dosage increased the adsorption area and the number of adsorption sites\(^{[2,23]}\). It should be noted that at the pH values of 2.0 and 4.0, an increase in the adsorbent dosage beyond 60~80 mg resulted in an insignificant increase in the AO7 removal efficiency. These results are consistent with those reported previously\(^{[2,12,24]}\).

Moreover, it was found that AO7 removal efficiency was high under acidic conditions. This is mainly because of the pH-responsive property of PDMAEMA. The tertiary amine groups (\(\text{—NR}_1\text{R}_2\)) of PDMAEMA on the surface of CNC acted as the binding sites for anions. Under acidic conditions, these amine groups protonated to form \(\text{—NR}_1\text{R}_2\text{H}^+\) groups, and the electric repulsion between the \(\text{—NR}_1\text{R}_2\text{H}^+\) groups restrained the tendency of the polymer chains to collapse or aggregate in solution\(^{[19]}\). However, under alkaline conditions, the tertiary amine groups could not protonate and the uncharged polymer chains collapsed or aggregated. Hence, PDMAEMA grafted on the CNC adsorbent became positively charged and dissolved completely at pH=2.0 and 4.0. On the other hand, at pH=8.5, the PDMAEMA chains remained uncharged and collapsed. And acidic environment increased the number of adsorption sites and the contact area between the adsorbent and azo ions. Therefore, from Fig.4 it can be observed that the AO7 removal efficiency of the CNC-PDMAEMA adsorbent at pH=2.0 and 4.0 was far greater than that at pH=8.5 when the other conditions were the same.

3.2.2 Effect of ionic strength

The effect of ionic strength on the AO7 adsorption of CNC-PDMAEMA was investigated by carrying out dye degradation at various NaCl concentrations. As
can be seen from Fig.5, as the ionic strength increased from 0.001 mol/L to 0.2 mol/L, the AO7 removal efficiency decreased from 73.6% to 26.3%. This can be attributed to the competition of Cl- with azo anions and other negative ions for adsorption sites. The presence of NaCl in high concentrations suppressed the AO7 adsorption[22].

3.2.3 Effect of the contact time and kinetic study

The effect of the contact time on the AO7 removal efficiency of the CNC-based adsorbent was investigated at two different temperatures (i.e. 20°C and 30°C) and the results are shown in Fig.6. As can be seen from Fig.6, at the beginning of the adsorption, the AO7 removal efficiency increased rapidly with time. After 16 min, the adsorption process reached equilibrium. At this equilibrium, the AO7 removal efficiency did not change significantly with time. Initially, the adsorption mainly occurred on the surface of the CNC-based adsorbent. After that, the adsorption occurred on the inner surface of PDMAEMA[25], which was dominated mainly by the electrostatic interactions between azo ions and the amine groups on PDMAEMA.

Adsorption kinetics provide essential information regarding the adsorption rate and reactive pathways. Hence, we applied the pseudo first- and second-order models (most widely used kinetic models) to elucidate the adsorption process. The equations are as follows:

Pseudo-first-order: ln\left(Q_e - Q_t\right) = -k_1 \cdot t \quad (3)

Where, k_1 is the pseudo-first-order rate constant, Q_e and Q_t (mg/g) are the amounts of dye adsorbed at equilibrium and time t (min), respectively.

Pseudo-second-order: $t/Q_t = 1/(k_2 \cdot Q_e^2) + t/Q_e \quad (4)$

Where, k_2 is the rate constant for the pseudo-second-order kinetics.

The adsorption kinetics of CNC-PDMAEMA based on the pseudo first- and second-order models are shown in Fig.7, and the estimated kinetic parameters are listed in Table 3. At the tested temperatures, the R^2 for the second-order model was >0.99, while that for the first-order model was found to be within the range 0.84–0.88. Moreover, the $Q_{e,cal}$ values (81.56 mg/g at 20°C, 89.58 mg/g at 30°C) for the pseudo-first-order model were much lower than the $Q_{e,exp}$ values (99.69 mg/g at 20°C, 114.80 mg/g at 30°C). On the other hand, the $Q_{e,cal}$ values (111.11 mg/g at 20°C, 125.00 mg/g at 30°C) for the second-order model matched well with the $Q_{e,exp}$ values. This indicates that the adsorption kinetics of CNC-PDMAEMA were better described by the pseudo-second-order model. This
suggests that the adsorption of the anionic dye onto
the CNC-based adsorbent was mainly controlled by
chemisorption\[25-26\]. The pseudo-second-order kinetics
of dye adsorption have also been reported for other
biomass-based materials\[25, 27\].

3.2.4 Effect of the initial dye concentration and
adsorption isotherm

Fig. 8(a) shows the effects of the initial AO7
concentration and temperature on the adsorption.
The adsorption of the dye at different concentrations
increased rapidly in the initial stages and decreased
gradually as the adsorption progressed until the
equilibrium was reached. The initial concentration
provided a driving force to overcome all the mass
transfer resistances (between the aqueous and
solid phases) of the dye. Hence, high initial dye
concentrations increased the adsorption capacity\[26\].

Additionally, an increase in temperature (from 20°C
to 30°C) also showed a positive effect on the adsorption.
This is because the temperature increase accelerated
the dye molecular diffusion rate and promoted the
adsorption of AO7.

Adsorption isotherm models are used to describe
the interaction between an adsorbate and adsorbent.
In this study, the adsorption of AO7 onto the CNC-
based adsorbent was evaluated using the Langmuir
and Freundlich isotherm models. The Langmuir
isotherm model, which assumes monolayer adsorption with
uniform energies of adsorption on the surface, can be
expressed as Equation (5):

\[\frac{C_e}{Q_e} = \frac{C_e}{Q_m} + \frac{1}{Q_m \cdot K_L} \] (5)

Where, \(Q_e \) (mg/g) and \(C_e \) (mg/L) are the amounts
of dye adsorbed per unit weight of biomass and dye
equilibrium concentration in solution, respectively. \(Q_m \)
(mg/g) denotes the monolayer adsorption capacity of
the adsorbent and \(K_L \) is the Langmuir constant.

The Freundlich model is based on
multilayer adsorption with the adsorption
energy decreasing with the surface
coverage. It is expressed as Equation (6):

\[\ln Q_e = \frac{1}{n} \cdot \ln C_e \cdot \ln K_F \] (6)

\[\ln Q_e = \frac{1}{n} \cdot \ln C_e \cdot \ln K_F \] (6)

Where, \(K_F \) is the Freundlich constant and \(n \) is an
empirical parameter relating the adsorption capacity and
adsorption intensity, which varies with the heterogeneity
of the material.

The adsorption isotherms are shown in Fig.8(b)
and Fig.8(c) and the model parameters are summarized

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{Temperature (°C)} & \textbf{\(Q_{exp} \) (mg·g\(^{-1}\))} & \textbf{\(R^2 \)} & \textbf{\(K_L \) (mg·g\(^{-1}\))} & \textbf{\(Q_{exp} \) (mg·g\(^{-1}\))} & \textbf{\(R^2 \)} & \textbf{\(K_F \) (mg·L\(^{-1}\))} & \textbf{\(n \)} & \textbf{\(R^2 \)} \\
\hline
20 & 123.95 & 0.99 & 3.23 \times 10^{-2} & 136.43 & & 16.78 & 2.70 & 0.94 \\
30 & 152.93 & 0.99 & 5.73 \times 10^{-2} & 162.87 & & 27.09 & 2.94 & 0.96 \\
\hline
\end{tabular}
\caption{Estimated kinetic parameters of the two adsorption isotherms}
\end{table}
in Table 4. As we can see, the Langmuir isotherm model fitted the experimental data well (high correlation coefficients, $R^2=0.99$). The theoretical maximum adsorption capacity ($Q_{e,\text{cal}}=136.43 \text{ mg/g at } 20^\circ\text{C}$, $Q_{e,\text{cal}}=162.87 \text{ mg/g at } 30^\circ\text{C}$) matched well with the experimental values ($Q_{e,\text{exp}}=123.95 \text{ mg/g at } 20^\circ\text{C}$, $Q_{e,\text{exp}}=152.93 \text{ mg/g at } 30^\circ\text{C}$). Therefore, it can be stated that the adsorption of AO7 onto CNC-PDMAEMA showed a monolayer uniform adsorption behavior\cite{28-29}. Moreover, the Freundlich isotherm model also described the adsorption accurately. The values of n were in the range of 1–10, indicating a favorable adsorption process\cite{4,13,30}.

4 Conclusions

In this study, we demonstrated that poly(N,N-diethylaminomethylmethacrylate) (PDMAEMA)-functionalized CNC (via ATRP) can be effectively used for removing AO7 from aqueous solutions. The CNC-PDMAEMA adsorbent was characterized by FT-IR and XPS. The results showed that the adsorbent was successfully prepared. The CNC-based adsorbent exhibited good adsorption properties. The adsorption process depended significantly on the initial pH value of the dye solution. The pH value of 2.0 favored the adsorption process. The adsorption isotherms of the CNC-PDMAEMA adsorbent could be well described by the Langmuir model, and the adsorption capacity was found to be 162.87 mg/g at 30°C. The kinetic study results showed that the adsorption process followed pseudo-second-order kinetics. Hence, CNC-PDMAEMA is a promising adsorbent for removing anionic dyes from waste water.

Acknowledgments

This work was supported by the Science and Technology Program of Guangzhou (No. 201704020038); the foundation of State Key Laboratory of Pulp and Paper Engineering (No. 2017QN01); and National Natural Science Foundation of China (No. 31570569).

References

